ТҮРЕ	V _{DSS}	R _{DS(on)}	Ι _D
IRF840	500 V	< 0.85 Ω	8 A

- 100% AVALANCHE TESTED
- NEW HIGH VOLTAGE BENCHMARK
- GATE CHARGE MINIMIZED

DESCRIPTION

The PowerMESHTMII is the evolution of the first generation of MESH OVERLAYTM. The layout refinements introduced greatly improve the Ron*area figure of merit while keeping the device at the leading edge for what concerns switching speed, gate charge and ruggedness.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR WELDING EQUIPMENT AND UNINTERRUPTIBLE POWER SUPPLIES AND MOTOR DR.VE3

Symuol	Parameter	Value	Unit
د VD	Drain-source Voltage (V _{GS} = 0)	500	V
VIIGH	Drain-gate Voltage (R_{GS} = 20 k Ω)	500	V
VGS	Gate- source Voltage	± 20	V
ID	Drain Current (continuous) at T _C = 25°C	8	A
ID	Drain Current (continuous) at T _C = 100°C	5.1	A
I _{DM} (•)	Drain Current (pulsed)	32	A
Ртот	Total Dissipation at $T_C = 25^{\circ}C$	125	W
	Derating Factor	1.0	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	3.5	V/ns
T _{stg}	Storage Temperature	–65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

ABSOLUTE N'A ALAUM RATINGS

(•)Pulse width limited by safe operating area

(1) $I_{SD} \leq 8A$, di/dt $\leq 50A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$.

IRF840

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	1	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W
ΤI	Maximum Lead Temperature For Soldering Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	8	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	520	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _(BR) DSS	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	500		00	V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating, T _C = 125 °C			1 50	μΑ μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V	ler.	6	±100	nA

ON (1)

ON (1)		OPS	2	(00	I	
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{CS} , i _D = 250µA	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{G_{U}} = 10^{\circ}, I_{D} = 3.5 \text{ A}$		0.75	0.85	Ω

DYNAMIC

Symbol	Paramiter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max,}$ $I_{D} = 3.5A$		6.4		S
C _{iss}	גיסי.ו Capacitance	$V_{DS} = 25V$, f = 1 MHz, $V_{GS} = 0$		832		pF
Curs	Output Capacitance			131		pF
Crus	Reverse Transfer Capacitance			17		pF

3/8

Source-drain Diode Forward Characteristics

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-220 MECHANICAL DATA

ЫМ		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

obsolete Productis). Obsolete Productis) besolete Productis). Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

8/8